Rice is an important economic and staple crop in several developing countries. Indica rice cultivars, ‘KDML105’ and ‘RD6’ are clear favourites, popular throughout world for their cooking quality, aroma, flavour, long grain, and soft texture, thus consequently dominate major plantation area in Northeastern region of Thailand. The objective of present study was to validate UAV (unmanned aerial vehicle)-derived information of rice crop traits with ground truthing non-destructive measurements in these rice varieties throughout whole life span under field environment. Plant height of cv. ‘KDML105’ was more than cv. ‘RD6’ for each respective stage. Whereas, number of tillers per clump in ‘KDML105’ exhibited stability at each developmental stage, which was in contrast to ‘RD6’ (increased continuously). Moreover, 1,000 grain weight, total grain weight and aboveground biomass were higher in ‘KDML105’ than in ‘RD6’ by 1.20, 1.82 and 3.82 folds. Four vegetative indices, ExG, EVI2, NDVI and NDRE derived from UAV platform proved out to be excellent parameters to compare KDML105 and RD6, especially in the late vegetative and reproductive developmental stages. Positive relationships between NDVI and NDRE, NDRE and total yield traits, as well as NDVI and aboveground biomass were demonstrated. In contrast, total chlorophyll pigment in cv. ‘RD6’ was higher than in cv. ‘KDML105’ leading to negative correlation with NDVI. ‘KDML105’ reflected rapid adaptation to Northeastern environments, leading to maintenance of plant height and yield components. Vegetation indices derived from UAV platform and ground truth non-destructive data exhibited high correlation. ‘KDML105’ was rapidly adapted to NE environments when compared with ‘RD6’, leading to maintenance of physiological parameters (detecting by UAV), the overall growth performances and yield traits (measuring by ground truth method). This study advocates harnessing and adopting the approach of UAV platform along with ground truthing non-destructive measurements of assessing a species/cultivars performance at broad land-use scale.