2010
DOI: 10.1088/0143-0807/31/3/l04
|View full text |Cite
|
Sign up to set email alerts
|

Higher accurate approximate solutions for the simple pendulum in terms of elementary functions

Abstract: A closed-form approximate expression for the solution of a simple pendulum in terms of elementary functions is obtained. To do this, the exact expression for the maximum tension of the string of the pendulum is first considered and a trial approximate solution depending of some parameters is used and which is substituted in the tension equation. We obtain the parameters for the approximate by means of a term-by-term comparison of the power series expansion for the approximate maximum tension with the correspon… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4

Citation Types

2
15
0
1

Year Published

2010
2010
2018
2018

Publication Types

Select...
8
1

Relationship

1
8

Authors

Journals

citations
Cited by 16 publications
(18 citation statements)
references
References 11 publications
2
15
0
1
Order By: Relevance
“…Considering equation (6) as the starting point, some other authors have obtained better approximate expressions for the period of a simple pendulum [6,17]. To do this, they expressed € cos(θ 0 / 2) in equation (7) as a function of k (equation (3)) and they…”
mentioning
confidence: 99%
“…Considering equation (6) as the starting point, some other authors have obtained better approximate expressions for the period of a simple pendulum [6,17]. To do this, they expressed € cos(θ 0 / 2) in equation (7) as a function of k (equation (3)) and they…”
mentioning
confidence: 99%
“…As aproximações lienares, em geral são bem simples, e foram propostas por L. H. Cadwell & E. R. Boyco [15], W. P. Ganley [16], M. I. Molina [17], R. B. Kidd & S. L. Fogg [18,19], R. R. Parwani [20] e G. E. Hite [21]. Diversos outros tipos de aproximações foram porpostadas por outros autores, tais como, logarítmicas por F. M. S. Lima & P. Arun [22] e por Xue De-Sheng et al [23], analíticas por Beléndez et al [24][25][26] e M. Turkyilmazoglu [27], aritmética-geomémtrica por C. G. Carvalhaes & P. Suppes [28], assintótica por A. Cromer [29], combinação da logarítmica e da assintótica por F. M. S. Lima [30], expansão delta linear por P. Amore et al [31], além de outras.…”
Section: Introductionunclassified
“…Beyond this small-angle regime, the number of terms to be included in the above series increases with θ m . The literature is rich on this topic, presenting distinct approximations for the large-angle period [3][4][5][6][7][8][9][10][11][12][13][14][15][16][17][18][19].…”
Section: Introductionmentioning
confidence: 99%