In the context of a tower of (strongly Birkhoff) Galois structures in the sense of categorical Galois theory, we show that the concept of a higher covering admits a characterisation which is at the same time absolute (with respect to the base level in the tower), rather than inductively defined relative to extensions of a lower order; and symmetric, rather than depending on a perspective in terms of arrows pointing in a certain chosen direction. This result applies to the Galois theory of quandles, for instance, where it helps us characterising the higher coverings in purely algebraic terms.