2020
DOI: 10.1002/tal.1812
|View full text |Cite
|
Sign up to set email alerts
|

Higher‐mode buckling and friction in long and large‐scale buckling‐restrained braces

Abstract: Summary Buckling‐restrained braces (BRBs) are widely used as energy‐dissipation members in seismic areas, and BRBs with 10–20 m workpoint lengths have been applied in practice, particularly in tall buildings and spatial structures. This paper investigates the adverse effects of the core yield length on the compressive overstrength factor, local compressive and tensile strains, and fatigue demands. Sets of 2D shell and 3D solid models were analyzed using Abaqus, considering core yield lengths of up to 14 m and … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3

Citation Types

0
3
0

Year Published

2021
2021
2025
2025

Publication Types

Select...
5
1

Relationship

1
5

Authors

Journals

citations
Cited by 8 publications
(3 citation statements)
references
References 15 publications
0
3
0
Order By: Relevance
“…No codified test protocol currently exists to systematically obtain the friction coefficient for BRB debonding interfaces, and the contact and slip demands that may plausibly be encountered in practice are not well understood. Therefore, a parametric study (Sitler and Takeuchi 2021) of 576 Abaqus/Explicit 2017 models (Smith 2017) was postprocessed to characterize the maximum and minimum bearing pressures, slip velocities, and slip distances and narrow the test specification.…”
Section: Pressure Velocity and Distance Characterizationmentioning
confidence: 99%
See 2 more Smart Citations
“…No codified test protocol currently exists to systematically obtain the friction coefficient for BRB debonding interfaces, and the contact and slip demands that may plausibly be encountered in practice are not well understood. Therefore, a parametric study (Sitler and Takeuchi 2021) of 576 Abaqus/Explicit 2017 models (Smith 2017) was postprocessed to characterize the maximum and minimum bearing pressures, slip velocities, and slip distances and narrow the test specification.…”
Section: Pressure Velocity and Distance Characterizationmentioning
confidence: 99%
“…Secondly, half-length two-dimensional (2D) models were adopted to improve runtime. These conservatively capture the demands at the plate edges, as three-dimensional (3D) anticlastic plate deformation reduces contact over the middle of the rectangular core plates (Sitler and Takeuchi 2021). BRB failure modes, such as global buckling and bulging, were not modeled to avoid arbitrarily limiting the analysis by a design-specific capacity.…”
Section: Pressure Velocity and Distance Characterizationmentioning
confidence: 99%
See 1 more Smart Citation