Hamiltonian systems are analyzed with a double homoclinic orbit connecting a saddle to itself. Competing centers exist. A small dissipative perturbation causes the stable and unstable manifolds of the saddle point to break apart. The stable manifolds of the saddle point are the boundaries of the basin of attraction for the competing attractors. With small dissipation, the boundaries of the basins of attraction are known to be tightly wound and spiral-like. Small changes in the initial condition can alter the equilibrium to which the solution is attracted. Near the unperturbed homoclinic orbit, the boundary of the basin of attraction consists of a large sequence of nearly homoclinic orbits surrounded by close approaches to the saddle point. The slow passage through an unperturbed homoclinic orbit (separatrix) is determined by the change in the value of the Hamiltonian from one saddle approach to the next. The probability of capture can be asymptotically approximated using this change in the Hamiltonian. The well-known leading-order change of the Hamiltonian from one saddle approach to the next is due to the effect of the perturbation on the homoclinic orbit. A logarithmic correction to this change of the Hamiltonian is shown to be due to the effect of the perturbation on the saddle point itself. It is shown that the probability of capture can be significantly altered from the well-known leading-order probability for Hamiltonian systems with double homoclinic orbits of the twisted type, an example of which is the Hamiltonian system corresponding to primary resonance. Numerical integration of the perturbed Hamiltonian system is used to verify the accuracy of the analytic formulas for the change in the Hamiltonian from one saddle approach to the next. (c) 1995 American Institute of Physics.