2021
DOI: 10.3934/dcdss.2020342
|View full text |Cite
|
Sign up to set email alerts
|

Higher order convergence for a class of set differential equations with initial conditions

Abstract: In this paper, we obtain some rapid convergence results for a class of set differential equations with initial conditions. By introducing the partial derivative of set valued function and the m-hyperconvex/hyperconcave functions (m ≥ 1), and using the comparison principle and quasilinearization, we derive two monotone iterative sequences of approximate solutions of such equations that involve the sum of two functions, and these approximate solutions converge uniformly to the unique solution with higher order.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2021
2021
2022
2022

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(1 citation statement)
references
References 18 publications
0
1
0
Order By: Relevance
“…Set-valued differential equations has attracted extensive attention of scholars because of its important applications in system identification, signal processing, optics, thermal, rheology and many other fields. There are some interesting results such as set-valued differential equations [1][2][3][4][5][6][7][8], set-valued functional differential equations [9][10][11][12][13] as well as stochastic set-valued differential equations [14][15][16]. The literature [17,18] systematically summarized the research results of this kind of problems.…”
Section: Introductionmentioning
confidence: 99%
“…Set-valued differential equations has attracted extensive attention of scholars because of its important applications in system identification, signal processing, optics, thermal, rheology and many other fields. There are some interesting results such as set-valued differential equations [1][2][3][4][5][6][7][8], set-valued functional differential equations [9][10][11][12][13] as well as stochastic set-valued differential equations [14][15][16]. The literature [17,18] systematically summarized the research results of this kind of problems.…”
Section: Introductionmentioning
confidence: 99%