2009
DOI: 10.1016/j.cma.2008.11.009
|View full text |Cite
|
Sign up to set email alerts
|

Higher order finite and infinite elements for the solution of Helmholtz problems

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
11
0
1

Year Published

2010
2010
2021
2021

Publication Types

Select...
7
1

Relationship

0
8

Authors

Journals

citations
Cited by 26 publications
(12 citation statements)
references
References 43 publications
0
11
0
1
Order By: Relevance
“…The first approach is the stabilized finite element method [2,3] which was developed by the modifications of the classical Galerkin method, such as the Galerkin/least-squares finite element method (GLS) [14][15][16], the residual-free bubbles method (RFB) [17] and the quasi-stabilized finite element method (QSFEM) [18]. Another effective strategy is the high-order finite element method, including the p-version FEM [19][20][21][22] and the partition of unity method (PUM) [23]. Although these methodologies are very effective in controlling the pollution effect, the dispersion still exists when resorting to these methods for acoustic analysis.…”
Section: Introductionmentioning
confidence: 99%
“…The first approach is the stabilized finite element method [2,3] which was developed by the modifications of the classical Galerkin method, such as the Galerkin/least-squares finite element method (GLS) [14][15][16], the residual-free bubbles method (RFB) [17] and the quasi-stabilized finite element method (QSFEM) [18]. Another effective strategy is the high-order finite element method, including the p-version FEM [19][20][21][22] and the partition of unity method (PUM) [23]. Although these methodologies are very effective in controlling the pollution effect, the dispersion still exists when resorting to these methods for acoustic analysis.…”
Section: Introductionmentioning
confidence: 99%
“…They are, (i) the stabilized FEM, such as the Galerkin/leastsquares finite element method (GLS) [3,4], the quasistabilized finite element method (QSFEM) [5]. (ii) higher order methods, such as generalized high order approximations ( p-version) [6,7], the partition of unity method (PUM) [8,9] and the discontinuous enrichment method (DEM) [10,11] (iii) meshless method, such as element-free Galerkin method (EFGM) [12,13]. They all can give improved solutions compared to the standard FEM, however, properly "softened" stiffness for the discrete model is much more effective and direct to the root of the numerical pollution error [14].…”
Section: Introductionmentioning
confidence: 99%
“…、边界元法(Boundary element method , BEM) [5][6] 、无网格法 [7][8][9][10] 和光滑有限元法(Smoothed finite element method, SFEM) [11][12][13][14] 等,其中有限元法 是最常用的声学数值方法。有限元法对各种声学问 题具有良好的适应性,计算简单,效率较高。但有 限元系统的刚度偏硬,在声学问题上表现为数值波 数与实际波数存在相位误差,从而导致色散误差, 并且随波数的增大而增大。为了使有限元法获得可 月 2016 年 8 月 崔向阳等:二维声学数值计算的梯度最小二乘加权 53 靠的精度,人们通常采用增加网格剖分密度或提高 插值阶次 [15] 的方法。DERAEMAEKER 等 [16] 研究发 现,为保证可靠的计算精度,单位波长内的节点数 要在 10 个以上,这在中高频问题上很难实施。 通过增加网格剖分密度或提高插值阶次的方 法来降低色散误差,提高求解精度的方法,需要更 多的存储空间和计算时间。近年来,有许多学者通 过其他新的方法来控制色散误差,取得了很大的进 展 。 BOUILLARD 等 [7] 将 无 单 元 法 (Element free Galerkin, EFG)应用到声学数值计算中,提高了计算 精度,然而,基于移动最小二乘构造的无单元法的 形函数不满足 Kronecker delta 性质,边界条件施加 困难 [17] ,为数值实现带来了不便。姚等将分区光滑 径 向 点 插 值 法 (Cell-based smoothed radial point interpolation method, CS-RPIM) [18] 推广到声学计算 中,使模型刚度得到软化,有效地控制了色散误差; 也有学者将混合有限元-无网格法 [19][20] 推广到声学 计算中,在一定程度上提高了计算精度。然而,无 网格法计算效率普遍偏低,很难用来解决计算规模 庞大的实际工程问题。 针对 FEM 和无网格法的优缺点,将移动最小 二乘(Moving least-squares, MLS)权函数 [21] 应用到…”
unclassified