Life and biological resilience rely on the execution of precise gene expression profiles. A key mechanism to ensure cellular homeostasis is the regulation of protein synthesis. Recent studies have unveiled an intrinsic regulatory capacity of ribosomes, previously considered mere executors of mRNA translation. Neurons in particular finely regulate protein synthesis, at both global and local levels. This sustains their complex morphology and allows them to rapidly transmit, integrate, and respond to external stimuli. In this thesis, I investigated the neuronal ribosome and how subcellular environments and physiological perturbations shape it, by profiling its molecular composition, functional interconnections, and cellular distribution. First, I used genetic engineering, biochemical purification, and mass spectrometry, to characterize in an unbiased manner the translation machinery specifically from excitatory and inhibitory neurons of the mouse cortex. I found that neuronal ribosomes commonly interact with RNA-binding proteins, components of the cytoskeleton, and proteins associated with the endoplasmic reticulum and vesicles. In line with the requirement for local protein synthesis in the distal parts of neurons, we observed that neuronal ribosomes preferentially interact with proteins involved in cellular transport. Remarkably, I observed a strong association between ribosomes and pre-synaptic vesicles, which suggests a potential regulatory interaction between local translation and neuronal activity. Intriguingly, I and others have observed mRNAs encoding for core ribosomal proteins (RPs) among the genes most enriched in neuronal processes. This observation challenges two historical assumptions of ribosome biology: (1) new RPs are incorporated only into newly forming ribosomes, and (2) this incorporation occurs only in the nucleus and perinuclear region. In my PhD, I aimed to directly test these two assumptions and if proven wrong ask whether and why neurons would localize RP mRNAs far from their known assembly site. Employing a combination of metabolic labeling and highly sensitive mass spectrometry techniques, I discovered that a subset of RPs rapidly and dynamically binds on and off mature ribosomes. Strikingly, this incorporation does not depend on the supply of new ribosomes from the nucleus. Therefore, my data refuted the assumption that ribosomes are built and degraded as a unit and revealed a more dynamic view of these machines, which can actively exchange core components. In particular, I found that the association of certain exchanging RPs is influenced by location (e.g., cell body versus neurites) and cellular state (e.g., post-oxidative stress). Neurons may use this mechanism to repair and/or specialize their protein synthesis machinery in a rapid and context-dependent manner. Finally, I asked whether some steps of ribosome biogenesis could also take place in distal processes. Although most steps of ribosome assembly occur within the nucleus, the final stages of maturation are known to occur in the cytosol. By combining several imaging and biochemical approaches, I found that cytosolic (but not nuclear) pre-ribosomal particles are present in neuronal processes. Through the incorporation of new RPs into these immature particles, neurons may be able to locally “turn on” previously incompetent ribosomes. This may enable regions near synapses to enhance and customize their translational capacity, independently of the central pool of ribosomes from the cell body. Indeed, I observed that synaptic plasticity induces a maturation of cytosolic pre-ribosomes. In summary, this thesis shows how neuronal ribosomes can sense cellular states, respond by adjusting their core composition, and in doing so influence the local capacity for protein synthesis. By overturning long-held assumptions in ribosome biology, this work highlights new molecular mechanisms of gene expression and enriches our understanding of the rapid and dynamic strategies cells employ to operate, thrive, and adaptively respond to environmental changes.