FeSe is the focus of intense research interest because of its unusual non-magnetic nematic state and because it forms the basis for achieving the highest critical temperatures of any iron-based superconductor. However, its Cooper pairing mechanism has not been determined because an accurate knowledge of the momentum-space structure of superconducting energy gaps ∆ i ( k) on the different electron-bands E i ( k) does not exist. Here we use Bogoliubov quasiparticle interference (BQPI) imaging to determine the coherent Fermi surface geometry of the α-and ε-bands surrounding the Γ = (0, 0) and X = (π/a Fe , 0) points of FeSe, and to measure their superconducting energy gaps ∆ α ( k) and ∆ ε ( k).We show directly that both gaps are extremely anisotropic but nodeless, and are aligned along orthogonal crystal axes. Moreover, by implementing a novel technique we demonstrate the sign change between ∆ α ( k) and ∆ ε ( k). This complex configuration of ∆ α ( k) and ∆ ε ( k), which was unanticipated within pairing theories for FeSe, reveals a unique form of superconductivity based on orbital selective Cooper pairing of electrons from the d yz orbitals of iron atoms. This new paradigm of orbital selectivity may be pivotal to understanding the microscopic interplay of quantum paramagnetism, nematicity and high temperature superconductivity.
BIOGRAPHICAL SKETCHPeter Oliver Sprau was born on June 13th 1986 in the small town of Kirchheimbolanden, Germany, where he completed both his primary and secondary education. Long before he was a physicist, Peter was an active member of the track and field team in his school and a local club, even going on to compete in the dash and relay event on the state and federal youth level. Upon finishing school, he fulfilled his civic duty and carried out his alternative civilian service in the hospital in Kirchheimbolanden. While Peter's academic interests were diverse, including not just science but also Latin and history, his natural curiosity about the world finally urged him to pursue a higher education in physics. Mistakes. Make glorious, amazing mistakes. Make mistakes nobody's ever made before. Don't freeze, don't stop, don't worry that it isn't good enough, or it isn't perfect, whatever it is: art, or love, or work or family or life.Whatever it is you're scared of doing, Do it. Make your mistakes, next year and forever." I also want to acknowledge in no specific order the following people for useful discussions throughout my PhD: