Peroxymonosulfate (PMS)-based advanced oxidation processes have shown potential for the removal of organic contaminants; however, the preparation of catalysts with high degradation efficiencies and rapid reaction rates remains a challenge. In this study, we have successfully synthesized CoFe bimetallic modified corn cob-derived biochar (CoFe/BC) for the activation of PMS, achieving the rapid and efficient degradation of bisphenol F (BPF). The synthesized CoFe/BC catalyst demonstrated excellent catalytic performance, achieving over 99% removal within 3 min and exhibiting a removal rate of 90.0% after five cycles. This could be attributed to the cyclic transformation of Co and Fe, which sustained rapid PMS activation for BPF degradation, and Co0/Fe0 played a significant role in the cyclic transformation. Furthermore, the electron paramagnetic resonance tests confirmed that •SO4− and •OH were the primary reactive oxygen species, while •O2− played a minor role in BPF degradation. This study highlights the high degradation efficiency, rapid reaction rate, excellent magnetic separation properties, and exceptional reusability of CoFe/BC catalysts for BPF removal, providing valuable insights for practical wastewater treatment.