Hollow nanomaterials have attracted significant attention because of their high chemical and thermal stability, high specific surface area, high porosity, low density, and good biocompatibility. These state-of-the-art nanomaterials have been shown to efficiently adsorb heavy metals, and volatile hazardous substances, photodegrade persistent organic pollutants, and other compounds, and inactivate bacteria. Such properties have enabled the use of these materials for environmental remediation, such as in water/wastewater treatment, soil remediation, air purification, and substance monitoring, etc. Hollow nanomaterials showed higher photocatalytic activity than those without hollow structure owing to their high active surface area, reduced diffusion resistance, and improved accessibility. And, the Doping method could improve the photocatalytic performance of hollow nanomaterials further under visible light. Moreover, the synthetic mechanisms and methods of these materials are important because their size and morphology help to determine their precise properties. This article reviews the environmental applications and potential risks of these materials, in addition to their syntheses. Finally, an outlook into the development of these materials is provided.