The use of cheap and easy to handle reagents, such as I(2) and Et(3) SiH, at low temperature allows the regioselective removal of benzyl protecting groups from highly O-benzylated carbohydrates. The observed regioselectivity is dependent on the nature of the precursor, the least accessible carbinol often being liberated. A mechanistic investigation reveals that in situ generated HI is the promoter of the process, whereas the regioselectivity appears to be mainly controlled by steric effects. However, the presence of an electron withdrawing acyl protecting group can switch the regioselectivity to favour deprotection of the carbinol position farthest from the ester group. The protocol is experimentally simple and provides straightforward access in useful yields to a wide range of partially protected mono- and disaccharide building blocks that are valuable for the synthesis of either biologically useful oligosaccharides or highly functionalised chiral compounds. Partially protected sugars thus obtained can also be coupled in situ with a glycosyl donor, as illustrated by the one-pot synthesis of a Lewis X mimic from fully protected precursors.