Selective hydrogenation of dodecanoic acid over supported bimetallic Ni-Sn alloy catalysts into dodecane-1-ol is demonstrated. Bimetallic nickel-tin supported on titanium oxide (Ni-Sn(1.5)/TiO2) and gamma-alumina (Ni-Sn(1.5)/-Al2O3); 1.5 = Ni/Sn molar ratio) were synthesized via hydrothermal method in a sealed-Teflon autoclave reactor at 150 o C for 24 h, then followed by reducing with hydrogen gas at 400 o C for 1.5 h. The synthesized catalysts were characterized by means of XRD, IC-AES, N2-adsorption (BET method), H2-chemisorption, and NH3-TPD. Bimetallic Ni-Sn(1.5)/TiO2 catalyst was found to be effective for hydrogenation of dodecanoic acid (>99 % conversion) to dodecane-1-ol (93% yield) at 160 o C, 30 bar H2, and 20 h and the highest dodecane-1-ol (97 % yield) was obtained at initial pressure of H2, 50 bar. An increase of reaction temperature slightly enhanced the degree of hydrodeoxygenation of dodecanoic acid to produce dodecane over both Ni-Sn(1.5)/TiO2 and Ni-Sn(1.5)/-Al2O3 catalysts.