Polymer light-emitting diodes (PLEDs) have attracted broad interest due to their solution-processable properties. It is well-known that to achieve better performance, organic light-emitting diodes require multilayer device structures. However, it is difficult to realize multilayer device structures by solution processing for PLEDs. Because most semiconducting polymers have similar solubility in common organic solvents, such as toluene, xylene, chloroform, and chlorobenzene, the deposition of multilayers can cause layers to mix together and damage each layer. Herein, a novel semiorthogonal solubility relationship was developed and demonstrated. For the first time, an alkane-soluble dendrimer is utilized as the electron-transport layer (ETL) in PLEDs via a solution-based process. With the dendrimer ETL, the external quantum efficiency increases more than threefold. This improvement in the device performance is attributed to better exciton confinement, improved exciton energy transfer, and better charge carrier balance. The semiorthogonal solubility provided by alkane offers another process dimension in PLEDs. By combining them with water/alcohol-soluble polyelectrolytes, more exquisite multilayer devices can be fabricated to achieve high device performance, and new device structures can be designed and realized.