Mesoporous cobalt- and/or iron-substituted aluminophosphates were synthesized by a hydrothermal method, followed by pyrolysis and calcination. The substitution of the transition metal elements modified the electronic properties of the samples and the accompanying surface characteristics. The samples showed tunable catalytic activity through the substitution of Fe and/or Co. We have demonstrated that the light-induced photocatalytic 4-nitrophenol reduction reaction can be enhanced through the substitution of Fe and/or Co in aluminophosphates. The induction time associated with the three different types of samples, observed due to the influence of the substituents, allows us to understand the mechanism of the 4-nitrophenol reduction process in our samples. Our work solves the issue associated with the origin of induction time and the enhancement of the catalytic activity of mesoporous aluminophosphates in the 4-nitrophenol reduction reaction through a controlled modification of the electronic properties.