The locality sensitive histogram (LSH) injects spatial information into the local histogram in an efficient manner, and has been demonstrated to be very effective for visual tracking. In this paper, we explore the application of this efficient histogram in two important problems. We first extend the LSH to linear time bilateral filtering, and then propose a new type of histogram for efficiently computing edge-preserving nearest neighbor fields (NNF). While existing histogram-based bilateral filtering methods are the state-ofthe-art for efficient grayscale image processing, they are limited to box spatial filter kernels only. In our first application, we address this limitation by expressing the bilateral filter as a simple ratio of linear functions of the LSH, which is able to extend the box spatial kernel to an exponential kernel. The computational complexity of the proposed bilateral filter is linear in the number of image pixels. In our second application, we derive a new bilateral weighted histogram (BWH) for NNF. The new histogram maintains the efficiency of LSH, which allows approximate NNF to be computed independent of patch size. In addition, BWH takes into account both spatial and color information, and thus provides higher accuracy for histogram-based matching, especially around color edges.Index Terms-locality sensitive histograms, bilateral weighted histograms, bilateral filtering, nearest neighbor searching, edge-preserving smoothing.