The effect of incorporation of octakis({alkyl} dimethylsiloxy)octasilsesquioxanes molecules with n-octyl, n-octadecyl and 4-methyl-hexyl substituents on thermal properties of polypropylene (PP), low-density polyethylene (LDPE) and high-density polyethylene (HDPE) was investigated. Thermal properties of those composite materials were evaluated by means of the differential scanning calorimetry (DSC) and thermogravimetric analysis (TG) methods. The type and mass% content of POSS nanofillers influenced the crystallization and melting properties as well as thermal stability of the obtained polyolefin nanocomposites. The incorporated POSS particles-acting as nucleating agents-improved the crystallization process of those polyolefin materials. The POSS nanofiller with n-octyl substituents turned out the most effective nucleating agent. The addition of POSS nanofiller particles into the polyolefin matrix affected the melting behavior of the nanocomposites obtained, decreasing their melting temperatures. Thermal stability under nitrogen as well as in air atmosphere was most significantly enhanced for polyolefin nanocomposites contained the POSS with n-octadecyl substituents. That may result from improved compatibility of the POSS structure with long n-alkyl chain substituents at the silicon-oxygen core. The uniform dispersion of the long n-alkyl chainsubstituted POSS was confirmed by SEM analysis.