Gallium phosphide (GaP) is an indirect bandgap semiconductor used widely in solid-state lighting. Despite numerous intriguing optical properties-including large χ (2) and χ (3) coefficients, a high refractive index (> 3), and transparency from visible to long-infrared wavelengths (0.55 − 11 µm)its application as an integrated photonics material has been little studied. Here we introduce GaPon-insulator as a platform for nonlinear photonics, exploiting a direct wafer bonding approach to realize integrated waveguides with 1.2 dB/cm loss in the telecommunications C-band (on par with Si-on-insulator). High quality (Q > 10 5 ), grating-coupled ring resonators are fabricated and studied. Employing a modulation transfer approach, we obtain a direct experimental estimate of the nonlinear index of GaP at telecommunication wavelengths: n2 = 1.2(5) × 10 −17 m 2 /W. We also observe Kerr frequency comb generation in resonators with engineered dispersion. Parametric threshold powers as low as 3 mW are realized, followed by broadband (> 100 nm) frequency combs with sub-THz spacing, frequency-doubled combs and, in a separate device, efficient Raman lasing. These results signal the emergence of GaP-on-insulator as a novel platform for integrated nonlinear photonics.