The rapid advancement of tactile electronic skin (E-skin) has highlighted the effectiveness of incorporating bionic, force-sensitive microstructures in order to enhance sensing performance. Among these, cilia-like microstructures with high aspect ratios, whose inspiration is mammalian hair and the lateral line system of fish, have attracted significant attention for their unique ability to enable E-skin to detect weak signals, even in extreme conditions. Herein, this review critically examines recent progress in the development of cilia-inspired bionic tactile E-skin, with a focus on columnar, conical and filiform microstructures, as well as their fabrication strategies, including template-based and template-free methods. The relationship between sensing performance and fabrication approaches is thoroughly analyzed, offering a framework for optimizing sensitivity and resilience. We also explore the applications of these systems across various fields, such as medical diagnostics, motion detection, human–machine interfaces, dexterous robotics, near-field communication, and perceptual decoupling systems. Finally, we provide insights into the pathways toward industrializing cilia-inspired bionic tactile E-skin, aiming to drive innovation and unlock the technology’s potential for future applications.