Tetracyclines (TCs) rank second globally in the use of animal infection therapy and animal husbandry as growth promoters among all antibiotics. However, large amounts of TCs residue in food products and more than 75% of TCs are excreted into the environment, causing adverse effects on the ecological system and human health. It has been challenging to simultaneously realize low-cost, rapid, and highly selective detection of TCs. Here, inspired by the fluorogenic reactions between resorcinol and catecholamines, we find the fluorescence quenching ability of tetracycline (TC) and firstly propose a fluorescent “turn-off” detection of TC using dopamine and 4-fluororesorcinol. The optimal reaction condition for the fluorescent assay is investigated and the optimized probe showed a good limit of detection (LOD of 1.7 µM) and a wide linear range (10 µM to 350 µM). Moreover, this fluorescent assay proved to be an effective tool for detecting TC in river, Sprite, and beer samples, which represent the aquatic environments and food and may contain tetracyclines residues. Finally, the high selectivity of the method for TC has been confirmed by eliminating the interference from common substances. The proposed strategy provides a high-efficiency and selective solution for the detection of TCs in environment and food and the application fields of this fluorescent assay could be further expanded in the future.
Supplementary Information
The online version contains supplementary material available at 10.1038/s41598-024-74411-7.