Coherent transport properties of a three-terminal hybrid superconducting interferometerVischi, F.; Carrega, M.; Strambini, E.; D'Ambrosio, S.; Bergeret, F. S.; Nazarov, Yuli; Giazotto, F.
Important noteTo cite this publication, please use the final published version (if applicable). Please check the document version above.
CopyrightOther than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Takedown policyPlease contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim. We present an exhaustive theoretical analysis of a double-loop Josephson proximity interferometer, such as the one recently realized by Strambini et al. for control of the Andreev spectrum via an external magnetic field. This system, called ω-SQUIPT, consists of a T-shaped diffusive normal metal (N ) attached to three superconductors (S) forming a double-loop configuration. By using the quasiclassical Green-function formalism, we calculate the local normalized density of states, the Josephson currents through the device, and the dependence of the former on the length of the junction arms, the applied magnetic field, and the S/N interface transparencies. We show that by tuning the fluxes through the double loop, the system undergoes transitions from a gapped to a gapless state. We also evaluate the Josephson currents flowing in the different arms as a function of magnetic fluxes, and we explore the quasiparticle transport by considering a metallic probe tunnel-coupled to the Josephson junction and calculating its I -V characteristics. Finally, we study the performances of the ω-SQUIPT and its potential applications by investigating its electrical and magnetometric properties.