The 5-nitroimidazole (5-NI) class of antibiotics, such as metronidazole, ornidazole, secnidazole, and tinidazole, are widely used to prevent bacterial infection in humans and livestock industries. However, their overuse contaminates the farmed animal products and water bodies. Hence, a selective, sensitive, and costeffective method to detect 5-NI antibiotics is the need of the hour. Herein, we report a rapid, inexpensive, and efficient sensing system to detect 5-NI drugs using an as-prepared solution of ε-poly-Llysine (ε-PL), a naturally occurring and biodegradable homopolypeptide that has an intrinsic fluorescence via clusteringtriggered emission. The low nanomolar detection limit (3.25−3.97 nM) for the aforementioned representative 5-NI drugs highlights the sensitivity of the system, outperforming most of the reported sensors alike. The resulting fluorescence quenching was found to be static in nature. Importantly, excellent recovery (100.26−104.41%) was obtained for all real samples and animal products tested. Visual detection was demonstrated by using paper strips and silica gel for practical applications. Furthermore, ε-PL could detect 5-NI antibiotics in living 3T3-L1 mouse fibroblast cells via cellular imaging. Taken together, the present work demonstrates the detection of 5-NI antibiotics using a biocompatible natural polypeptide, ε-PL, and represents a simple and inexpensive analytical tool for practical application.