wileyonlinelibrary.comSkin-mountable and wearable sensors can be attached onto the clothing or even directly mounted on the human skin for the real-time monitoring of human activities. [ 10 ] Besides their high effi ciency, they must fulfi ll several minimum requirements including high stretchability, fl exibility, durability, low power consumption, biocompatibility, and lightweight. These demands become even more severe for epidermal electronic devices where mechanical compliance like human skin and high stretchability ( ε > 100% where ε is the strain) are required. [ 11,12 ] Recently, several types of skin-mountable and wearable sensors have been proposed by using nanomaterials coupled with fl exible and stretchable polymers. Indeed, nanomaterials are utilized as functional sensing elements owing to their outstanding electrical, mechanical, optical, and chemical properties while polymers are employed as fl exible support materials thanks to their fl exibility, stretchability, humanfriendliness, and durability. [ 13 ] Examples of those innovative sensors include strain sensors, [ 10,[12][13][14] pressure sensors, [ 5,[15][16][17] electronic skins (e-skins), [ 3,[16][17][18][19][20] and temperature sensors. [ 2,21,22 ] Particularly, various skin-mountable and wearable strain sensors have been developed because of their broad applications in personalized heath-monitoring, human motion detection, human-machine interfaces, and soft robotics. [ 10,12,[23][24][25][26][27][28][29][30][31] This paper aims to survey fabrication processes, working mechanisms, strain sensing performances, and applications of stretchable strain sensors. The article is organized as follows: fi rst, common operation mechanisms of stretchable strain sensors are described. Here, we summarize novel functional nanomaterials and techniques for the fabrication of stretchable strain sensors in details. Second, mechanisms involved in the strain-responsive behavior of resistive-type and capacitive-type sensors are explained. We show that the infl uence of traditional mechanisms like geometrical changes and piezoresistivity of materials on the strain sensing performance of fl exible strain sensors are very small whereas mechanisms such as disconnection between sensing elements, crack propagation in thin fi lms, and tunneling effect can potentially be employed for highly stretchable and sensitive strain sensing. Third, we emphasize the performance parameters of stretchable strain sensors in terms of stretchability, sensitivity, linearity, hysteresis behavior, response time, overshooting, and durability. We demonstrate