Polyacrylic acid (PAA) is a non-toxic, biocompatible, and biodegradable polymer that gained lots of interest in recent years. PAA nano-derivatives can be obtained by chemical modification of carboxyl groups with superior chemical properties in comparison to unmodified PAA. For example, nano-particles produced from PAA derivatives can be used to deliver drugs due to their stability and biocompatibility. PAA and its nanoconjugates could also be regarded as stimuli-responsive platforms that make them ideal for drug delivery and antimicrobial applications. These properties make PAA a good candidate for conventional and novel drug carrier systems. Here, we started with synthesis approaches, structure characteristics, and other architectures of PAA nanoplatforms. Then, different conjugations of PAA/nanostructures and their potential in various fields of nanomedicine such as antimicrobial, anticancer, imaging, biosensor, and tissue engineering were discussed. Finally, biocompatibility and challenges of PAA nanoplatforms were highlighted. This review will provide fundamental knowledge and current information connected to the PAA nanoplatforms and their applications in biological fields for a broad audience of researchers, engineers, and newcomers. In this light, PAA nanoplatforms could have great potential for the research and development of new nano vaccines and nano drugs in the future.