Ductile iron is a material that is very sensitive to the conditions of crystallization. Due to this fact, the data on the cast iron properties obtained in tests are significantly different and thus sets containing data from samples are contradictory, i.e. they contain inconsistent observations in which, for the same set of input data, the output values are significantly different.The aim of this work is to try to determine the possibility of building rule models in conditions of significant data uncertainty. The paper attempts to determine the impact of the presence of contradictory data in a data set on the results of process modeling with the use of rule-based methods. The study used the well-known dataset (Materials Algorithms Project Data Library, n.d.) pertaining to retained austenite volume fraction in austempered ductile cast iron. Two methods of rulebased modeling were used to model the volume of the retained austenite: the decision trees algorithm (DT) and the rough sets algorithm (RST).The paper demonstrates that the number of inconsistent observations depends on the adopted data discretization criteria. The influence of contradictory data on the generation of rules in both algorithms is considered, and the problems that can be generated by contradictory data used in rule modeling are indicated.