One-shot decoupling is a powerful primitive in quantum information theory and was hypothesized to play a role in the black hole information paradox. We study black hole dynamics modeled by a trilinear Hamiltonian whose semiclassical limit gives rise to Hawking radiation. An explicit numerical calculation of the discretized path integral of the S matrix shows that decoupling is exact in the continuous limit, implying that quantum information is perfectly transferred from the black hole to radiation. A striking consequence of decoupling is the emergence of an output radiation entropy profile that follows Page's prediction. We argue that information transfer and the emergence of Page curves is a robust feature of any multilinear interaction Hamiltonian with a bounded spectrum.