2015
DOI: 10.1590/0100-6045.2015.v38n2.gv
|View full text |Cite
|
Sign up to set email alerts
|

Hilbert Between the Formal and the Informal Side of Mathematics

Abstract: In this article we analyze the key concept of Hilbert's axiomatic method, namely that of axiom. We will find two different concepts: the first one from the period of Hilbert's foundation of geometry and the second one at the time of the development of his proof theory. Both conceptions are linked to two different notions of intuition and show how Hilbert's ideas are far from a purely formalist conception of mathematics. The principal thesis of this article is that one of the main problems that Hilbert encounte… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
3
0
3

Year Published

2019
2019
2021
2021

Publication Types

Select...
2
1

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(6 citation statements)
references
References 26 publications
0
3
0
3
Order By: Relevance
“…Some different hypotheses have been advanced on the reason for its adjunction [e.g. 12,74]. We can here suppose Hilbert adds it to reconcile his axiomatic treatment with the one of Riemann, Helmholtz and Lie to account for the motions of rigid bodies, defined by them as continuous spatial transformations.…”
Section: IVmentioning
confidence: 99%
“…Some different hypotheses have been advanced on the reason for its adjunction [e.g. 12,74]. We can here suppose Hilbert adds it to reconcile his axiomatic treatment with the one of Riemann, Helmholtz and Lie to account for the motions of rigid bodies, defined by them as continuous spatial transformations.…”
Section: IVmentioning
confidence: 99%
“…This is because the thinking stage of elementary school students is still not formal, even elementary school students in lower grades are still in the pre-concrete thinking stage (Kholiq, 2020). On the other hand, mathematics is a deductive, axiomatic, formal, hierarchical, abstract science, and is a meaningful language of symbols (Venturi, 2015;Vojkuvkova, 2012). Given these differences in characteristics, it is necessary to have a special ability from a teacher to bridge the world of children who have not thought deductively in order to understand the deductive world of mathematics.…”
Section: Introductionmentioning
confidence: 99%
“…Imagination is the power of thought to imagine (in wishful thinking) or create images (paintings, essays, etc.) of events based on reality or one's general experience (Pelaprat & Cole, 2011;Venturi, 2015). With imagination, humans develop something from simplicity to be more valuable in mind (Pelaprat & Cole, 2011).…”
Section: Introductionmentioning
confidence: 99%
“…71 73 Esta proposta resolve diversas questões delicadas em filosofia da matemática de modo extremamente rude. 74 Com relação a verdade das sentenças aritméticas, a predicação de 1 + 3 = 2 + 2 deve ser fruto da transformação dos símbolos primitivos pela aplicação das regras do jogo-aritmética. Uma vez que, matematicamente, a obtenção de uma sentença pela aplicação das regras do jogo aos símbolos é a demonstração da sentença, a veracidade de 1 + 3 = 2 + 2 é identificada com sua demonstrabilidade, e o mesmo cânone deve ser aplicado tanto ao último teorema de Fermat quanto à qualquer outra sentença aritmética.…”
Section: Formalismounclassified
“…[33, p. 5]. 74 O problema metafísico da existência de números é resolvido pela negação de sua importância e relevância; não há números e, mesmo que existam, não são relevantes à aritmética. A segunda parte dessa resposta carece de plausibilidade, pois negar a relevância dos números para a aritmética contradiz a história, a prática e a aplicabilidade desta disciplina.…”
Section: Notas Do Capítulounclassified