2021
DOI: 10.1051/e3sconf/202127411003
|View full text |Cite
|
Sign up to set email alerts
|

Hilbert boundary value problem for generalized analytic functions with a singular line

Abstract: In this paper, we study an inhomogeneous Hilbert boundary value problem with a finite index and a boundary condition on a circle for a generalized Cauchy-Riemann equation with a singular coefficient. To solve this problem, we conducted a complete study of the solvability of the Hilbert boundary value problem of the theory of analytic functions with an infinite index due to a finite number of points of a special type of vorticity. Based on these results, we have derived a formula for the general solution and st… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 28 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?