2018
DOI: 10.48550/arxiv.1812.06297
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Hinted Networks

Abstract: We present Hinted Networks: a collection of architectural transformations for improving the accuracies of neural network models for regression tasks, through the injection of a prior for the output prediction (i.e. a hint). We ground our investigations within the camera relocalization domain, and propose two variants, namely the Hinted Embedding and Hinted Residual networks, both applied to the PoseNet base model for regressing camera pose from an image. Our evaluations show practical improvements in localizat… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 22 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?