Cisplatin is one of the most commonly used anticancer drugs worldwide. It is mainly used in the treatment of ovarian cancer, but also used in testicular, bladder and lung cancers. The significant advantage of this drug is the multidirectional mechanism of its anticancer action, with the most important direction being damaging the DNA of cancer cells. Unfortunately, cisplatin displays a number of serious disadvantages, including toxicity to the most important organs, such as kidneys, heart, liver and inner ear. Moreover, a significant problem among patients with ovarian cancer, treated with cisplatin, is the development of numerous resistance mechanisms during therapy, including changes in the processes of cellular drug import and export, changes in the DNA damage repair mechanisms, as well as numerous changes in the processes of apoptosis and autophagy. Due to all of the mentioned problems, strategies to increase the effectiveness of cisplatin in the treatment of ovarian cancer are intensively sought. The most important strategy includes the development of less toxic cisplatin analogs. Another important direction is combination therapy, involving the simultaneous use of cisplatin with different anticancer drugs, substances derived from plants, temperature or radiotherapy. Many years of observations accompanying the presence of cisplatin in the therapy made it possible to provide a series of verifiable, statistically significant data, but also to show how, over time, with the new information and scientific discoveries, it is possible to describe and understand the therapeutic problems observed in practice, such as the acquisition of drug resistance by tumor cells or induction of changes in the tumor microenvironment. According to the authors, confronting what we knew so far with what new trends offer has a profound meaning. This paper presents information on the history of cisplatin and describes the molecular mechanisms of its action and the development of resistance by cancer cells. In addition, our goal was to highlight a number of therapeutic strategies to increase the effectiveness of cisplatin in the treatment of ovarian cancer, as well as to identify methods to eliminate problems associated with the use of cisplatin.