Background: A growing body of evidence shows that neuronal activity is involved in modulating the efficacy of acupuncture therapy. However, it has been seldom investigated whether neuronal activity following acupuncture stimulation is effective at regulating hepatic inflammation. Objective: Using the concanavalin A (ConA) model of hepatitis, we investigated the regulation of inflammatory cytokine tumor necrosis factor (TNF)-α in the liver tissue and the blood after acupuncture stimulation at ST36. Methods: Mice were subjected to ConA injection, acupuncture stimulation at ST36 by manual acupuncture (MA) or electroacupuncture (EA) procedures, and vagotomy (VNX). Liver tissue and blood were collected for TNF-α analysis. TNF-α mRNA was analyzed by real-time polymerase chain reaction (PCR), and TNF-α, CD11b, CD68, and Erk1/2 proteins were analyzed by Western blotting, immunofluorescence staining, and enzyme-linked immunosorbent assay. Results: TNF-α mRNA and protein were induced in CD11b-positive hepatic cells and the plasma at 6–24 h after ConA injection. The application of MA or EA was very effective at attenuating the production of TNF-α. Anti-inflammatory effects of acupuncture were greatly suppressed by VNX in ConA-injected animals, suggesting the requirement of vagus nerve activity in acupuncture-mediated anti-inflammatory responses. Electrical stimulation of the sciatic nerve (SNS) resulted in an anti-inflammatory effect similar to acupuncture stimulation. In parallel with TNF-α, production of phospho-Erk1/2, which was induced in the liver tissue, was downregulated by MA and EA in liver cells. Conclusion: The regulatory effects of acupuncture stimulation on inflammatory responses in the liver may be modulated through the activation of the vagus nerve pathway.