SUMMARY
The hippocampus, as part of the cerebral cortex, is essential for memory formation and spatial navigation. Although it has been extensively studied, especially as a model system for neurophysiology, the cellular processes involved in constructing and organizing the hippocampus remain largely unclear. Here, we show that clonally related excitatory neurons in the developing hippocampus are progressively organized into discrete horizontal, but not vertical, clusters in the stratum pyramidale, as revealed by both cell type-specific retroviral labeling and mosaic analysis with double markers (MADM). Moreover, distinct from those in the neocortex, sister excitatory neurons in Cornu Ammonis 1 region of the hippocampus rarely develop electrical or chemical synapses with each other. Instead, they preferentially receive common synaptic input from nearby fast-spiking (FS), but not non-FS, interneurons and exhibit synchronous synaptic activity. These results suggest that shared inhibitory input may specify horizontally clustered sister excitatory neurons as functional units in the hippocampus.