The second messenger cyclic diguanylate (c-di-GMP) is an important regulator of motility in many bacterial species. In Pseudomonas aeruginosa, elevated levels of c-di-GMP promote biofilm formation and repress flagellum-driven swarming motility. The rotation of P. aeruginosa's polar flagellum is controlled by two distinct stator complexes, MotAB, which cannot support swarming motility, and MotCD, which promotes swarming motility. Here we show that when c-di-GMP levels are elevated, swarming motility is repressed by the PilZ domain-containing protein FlgZ and by Pel polysaccharide production. We demonstrate that FlgZ interacts specifically with the motility-promoting stator protein MotC in a c-di-GMP-dependent manner and that a functional green fluorescent protein (GFP)-FlgZ fusion protein shows significantly reduced polar localization in a strain lacking the MotCD stator. Our results establish FlgZ as a c-di-GMP receptor affecting swarming motility by P. aeruginosa and support a model wherein c-di-GMP-bound FlgZ impedes motility via its interaction with the MotCD stator.
IMPORTANCEThe regulation of surface-associated motility plays an important role in bacterial surface colonization and biofilm formation. c-di-GMP signaling is a widespread means of controlling bacterial motility, and yet the mechanism whereby this signal controls surface-associated motility in P. aeruginosa remains poorly understood. Here we identify a PilZ domain-containing c-di-GMP effector protein that contributes to c-di-GMP-mediated repression of swarming motility by P. aeruginosa. We provide evidence that this effector, FlgZ, impacts swarming motility via its interactions with flagellar stator protein MotC. Thus, we propose a new mechanism for c-di-GMP-mediated regulation of motility for a bacterium with two flagellar stator sets, increasing our understanding of surface-associated behaviors, a key prerequisite to identifying ways to control the formation of biofilm communities.
Cyclic diguanylate (c-di-GMP) is a ubiquitous bacterial second messenger responsible for regulating a range of cellular processes, including motility and biofilm formation (1). In general, low intracellular c-di-GMP levels are associated with motile lifestyles, while elevated levels of c-di-GMP promote surface attachment and sessile lifestyles (2, 3). c-di-GMP is synthesized from two molecules of GTP by diguanylate cyclases (DGCs) and degraded by c-di-GMP-specific phosphodiesterases (PDEs) (1, 4). Many DGCs and PDEs involved in motility regulation have been characterized, but the mechanisms by which c-di-GMP regulates motility are poorly understood in Pseudomonas aeruginosa and in other bacterial species.To regulate numerous biological functions, c-di-GMP binds to specific effector proteins or RNA (reviewed in reference 5). Recent studies have focused on identifying these c-di-GMP effectors and their mechanisms for regulating c-di-GMP-dependent processes. One class of effectors is the PilZ domain-containing protein family, which is characterized by conserved ...