Amputation of the zebrafish caudal fin stimulates regeneration of the dermal skeleton and reexpression of sonic hedgehog (shh)-signaling pathway genes. Expression patterns suggest a role for shh signaling in the secretion and patterning of the regenerating dermal bone, but a direct role has not been demonstrated. We established an in vivo method of gene transfection to express ectopically genes in the blastema of regenerating fins. Ectopic expression of shh or bmp2 in the blastema-induced excess bone deposition and altered patterning of the regenerate. The effects of shh ectopic expression could be antagonized by ectopic expression of chordin, an inhibitor of bone morphogenetic protein (bmp) signaling. We disrupted shh signaling in the regenerating fin by exposure to cyclopamine and found a dose-dependent inhibition of fin outgrowth, accumulation of melanocytes in the distal region of each fin ray, loss of actinotrichia, and reduction in cell proliferation in the mesenchyme. Morphological changes were accompanied by an expansion, followed by a reduction, in domains of shh expression and a rapid abolition of ptc1 expression. These results implicate shh and bmp2b signaling in the proliferation and͞or differentiation of specialized bone-secreting cells in the blastema and suggest shh expression may be controlled by regulatory feedback mechanisms that define the region of bone secretion in the outgrowing fin.T he extent of regenerative capacity varies between species and tissue types. Analysis of the regenerative events is not only informative in its own right but may also provide information pertaining to earlier morphogenetic events, because regeneration often recapitulates development. An example of this is the dermal skeleton component of the zebrafish (Danio rerio) caudal fin, which regenerates rapidly after amputation by processes reminiscent of those occurring during larval stages (for review, see ref. 1), including reexpression of developmental genes (2-6).The dermal skeleton of the zebrafish fin comprises mineralized lepidotrichia (fin rays) and more distal collagenous actinotrichia (Fig. 1A). The lepidotrichia are composed of two segmented hemirays that bifurcate periodically along their proximal-distal axis forming sister-ray branches. After amputation, epithelial cells migrate from the stump to cover the wound region (7, 8), beneath which a blastema containing undifferentiated proliferative mesenchymal cells forms (1). Scleroblasts then differentiate within the blastema at the epithelial͞mesenchymal interface and begin to secrete the matrix that will form the new dermal bone.During regeneration, the signaling molecule sonic hedgehog (shh) involved in patterning of many structures (reviewed in ref. 9), its membrane-receptor patched1 (ptc1) (9), and bone morphogenetic protein 2b (bmp2b), a member of the transforming growth factor- family (10), are all initially reexpressed in a single domain at the distal stump of the amputated ray. Expression is found in a subset of cells in the basal layer of the epider...