17 Cooperstown beagles of known DL-A genotypes were exposed to supralethal total body irradiation and received a bone marrow allograft from a DL-A-identical donor; 11 littermate and 6 nonlittermate donor-recipient pairs were studied. The recipients are surviving uneventfully for 315, 364, 424, 440, 531, 531, 584, 605, 625, 635, and 649 days in the littermate group and for 211, 279, 280, 368, 479, and 480 days in the nonlittermate group.
The radiation chimeras underwent bilateral nephrectomy and received a kidney allograft obtained from their respective marrow donor within 43–120 days after bone marrow transplantation. The renal allografts are surviving for 191, 200, 221, 234, 313, 349, 361, 377, 378, 405, 441, 444, 482, 557, 580, 581, and 586 days, respectively.
12 of 13 skin allografts obtained from the marrow donor are at present surviving in the recipients for 107, 110, 110, 110, 116, 122, 128, 143, 143, 162, 178, and 199 days, respectively; one graft was rejected at 84 days. In contrast, the radiation chimeras rejected 25 skin allografts obtained from DL-A-incompatible donors within 10.5–21 days (MST = 15.2 days). Skin transplants obtained from DL-A-identical siblings of the bone marrow donors were rejected within 20–36 days (MST = 25.8 days) in recipients of bone marrow cells obtained from littermate donors. Recipients of nonlittermate bone marrow transplants accorded such allografts a prolonged survival time of 27–76 days (MST = 56.2 days).
Prospective selection of genotypically DL-A-identical donor-recipient pairs results in the regularly reproducible long-term survival of bone marrow allografts. The radiation chimeras produced in this manner have developed a donor-specific state of unresponsiveness to kidney and skin allografts. The results are consistent with the existence in the canine species of at least three closely linked genetic systems relevant to transplantation, including DL-A, MLC, and a possible bone marrow transplantation locus.