Context
A detailed understanding of renal surgical anatomy is necessary to optimize preoperative planning and operative technique and provide a basis for improved outcomes.
Objective
To evaluate the literature regarding pertinent surgical anatomy of the kidney and related structures, nephrometry scoring systems, and current surgical strategies for partial nephrectomy (PN).
Evidence acquisition
A literature review was conducted.
Evidence synthesis
Surgical renal anatomy fundamentally impacts PN surgery. The renal artery divides into anterior and posterior divisions, from which approximately five segmental terminal arteries originate. The renal veins are not terminal. Variations in the vascular and lymphatic channels are common; thus, concurrent lymphadenectomy is not routinely indicated during PN for cT1 renal masses in the setting of clinically negative lymph nodes. Renal-protocol contrast-enhanced computed tomography or magnetic resonance imaging is used for standard imaging. Anatomy-based nephrometry scoring systems allow standardized academic reporting of tumor characteristics and predict PN outcomes (complications, remnant function, possibly histology). Anatomy-based novel surgical approaches may reduce ischemic time during PN; these include early unclamping, segmental clamping, tumor-specific clamping (zero ischemia), and unclamped PN. Cancer cure after PN relies on complete resection, which can be achieved by thin margins. Post-PN renal function is impacted by kidney quality, remnant quantity, and ischemia type and duration.
Conclusions
Surgical renal anatomy underpins imaging, nephrometry scoring systems, and vascular control techniques that reduce global renal ischemia and may impact post-PN function. A contemporary ideal PN excises the tumor with a thin negative margin, delicately secures the tumor bed to maximize vascularized remnant parenchyma, and minimizes global ischemia to the renal remnant with minimal complications.
Patient summary
In this report we review renal surgical anatomy. Renal mass imaging allows detailed delineation of the anatomy and vasculature and permits nephrometry scoring, and thus precise, patient-specific surgical planning. Novel off-clamp techniques have been developed that may lead to improved outcomes.