Stenodus leucichthys nelma is an economically important species for cold‐water aquaculture. Unlike other Coregoninae, S. leucichthys nelma is a piscivore. Here, we describe in detail the development of the digestive system and the yolk syncytial layer from hatching to early juvenile stage using histological and histochemical methods to determine their common and specific characteristics and to test the hypothesis that the digestive system of S. leucichthys nelma rapidly acquires adult features. The digestive tract differentiates at hatching and starts to function before the transition to mixed feeding. The mouth and anus are open, mucous cells and taste buds are present in the buccopharyngeal cavity and esophagus, pharyngeal teeth have erupted, the stomach primordium is seen, the intestinal epithelium with mucous cells is folded and the intestinal valve is observed; the epithelial cells of the postvalvular intestine contain supranuclear vacuoles. The liver blood vessels are filled with blood. The cells of exocrine pancreas are loaded with zymogen granules, and at least two islets of Langerhans are present. However, the larvae remain dependent on maternal yolk and lipids for a long time. The adult features of the digestive system develop gradually, the most significant changes take place approximately from 31 to 42 days posthatching. Then, the gastric glands and pyloric caeca buds appear, the U‐shaped stomach with glandular and aglandular regions develops, the swim bladder inflates, the number of islets of Langerhans increases, the pancreas becomes scattered, and the yolk syncytial layer undergoes programmed death during the larval‐to‐juvenile transition. During postembryonic development, the mucous cells of the digestive system contain neutral mucosubstances.