Toxic impact of sublethal concentration (1 mg/L; 5% of 96h LC 50 value) of sodium arsenite (NaAsO 2 ) on certain biomolecules (proteins, nucleic acids, lipids, and glycogen) of five tissue components (muscles, liver, brain, skin, and gills) of the freshwater catfish Clarias batrachus was analysed. The important toxic manifestations include marked decrease in the concentration of proteins (21.72-45.42% in muscles; 3.42-53.94% in liver; 15.39-45.42% in brain; 15.40-4.00% in skin and 11.35-64.13% in gills), .01% in gills), .93% in skin and 21.47-44.38% in gills) and glycogen (24.00-51.72% in muscles; 49.11-72.45% in liver; 11.49-26.03% in brain; 26.13-38.05% in skin and 17.80-37.97% in gills). Excepting liver where the lipid content increases (15.82-24.13%), the fat content also showed depletion in their concentration (10.40-29.83% in muscles; 8.30-34.45% in brain; 8.94-31.47% in skin and 12.75-28.86% in gills), in the rest of the organ systems.Foi analisado o impacto tóxico da concentração subletal (1 mg/L; 5% do valor de LC50 de 96h) do arsenito de sódio (NaAsO2) sobre certas biomoléculas (proteinas, ácidos nucleicos, lipídios e glicogênio) de cinco tecidos (músculos, fígado, cérebro, pele e brânquias) do bagre Clarias batrachus. As manifestações tóxicas importantes incluiram o decréscimo acentuado na concentração de proteinas (21,72-45,42% nos músculos; 3,42-53,94% no fígado; 15,39-45,42% no cérebro; 15,40-4,00% na pele e 11,35-64,13% nas brânquias), DNA (0,55-22,95% nos músculos; 8,33-14,06% no fígado; 5,30-18,40% no cérebro; 13,57-52,80% na pele e 12,38-31,01% nas brânquias), RNA (42,[68][69][70][71][72][73][74][75][76]16% nos músculos; 10,75% no fígado; 5,05% no cérebro; 7,93% na pele e 21,47-44,38% nas brânquias) e glicogênio (24,00-51,72% nos músculos; 49,11-72,45% no fígado; 11,49-26,03% no cérebro; 26,13-38,05% na pele e 17,80-37,97% nas brânquias). Excetuando o fígado onde o conteúdo de lipídeos aumentou (15,82-24,13%), houve uma depleção na concentração de lipídeos no restante dos sistemas orgânicos (10,40-29,83% nos músculos; 8,30-34,45% no cérebro; 8,94-31,47% na pele e 12,75-28,86% nas brânquias).Key words: Glycogen, Lipids, Nucleic acids, Proteins, Toxicity.Banaras Hindu University, Eco-physiology Unit, Department of Zoology, Varanasi-221 005, India. randhir18bhu@gmail.com (RK), tkbzool@yahoo.co.in (TKB)
IntroductionThere has been a continuous and alarming influx of arsenic to aquatic environment worldwide from both naturally occurring and anthropogenic sources (Goering et al., 1999). More than one hundred million people are at high risk of elevated arsenic exposure, mainly via drinking water, as well as by the air born metalloid in the areas with coal burning and industrial emissions. Consumption of the arsenic contaminated fishes collected from the polluted waters might also contribute to bioaccumulation of arsenic in human beings. Hence it is of immense importance to know the arsenic induced damages in the different organ systems of fishes used for human consumption. In an effort to achieve t...