Technological progress has always been regarded as an important factor affecting haze pollution. A large number of academic studies have focused on the effect of technological progress on haze pollution, but there are few discussions on the effects of technological progress from different sources. In view of this, a dynamic panel model is constructed, and a systematic generalized method of moments (GMM) method is applied to empirically test the overall impact of technological progress from different sources on haze pollution and the regional heterogeneity of the impact. The results show that the overall and regional impact of technological progress from different sources on haze pollution is entirely different. Among them, for the whole country, independent innovation has a significant inhibitory effect on haze pollution, and technology introduction has aggravated haze pollution to a certain extent. At the regional level, all types of technological progress in the east can effectively reduce haze, the central region having haze reduction results consistent with the overall national level, and in the west, independent innovation and direct introduction can effectively reduce haze, while reverse technology spillover is ineffective. Therefore, policy recommendations such as improving the ability of independent innovation, improving the quality of technology introduction, and coordinating regional technology against haze are put forward.