The interest in fractional-order (FO) control can be traced back to the late nineteenth century. The growing tendency towards using fractional-order proportional-integral-derivative (FOPID) control has been fueled mainly by the fact that these controllers have additional "tuning knobs" that allow coherent adjustment of the dynamics of control systems. For instance, in certain cases, the capacity for additional frequency response shaping gives rise to the generation of control laws that lead to superior performance of control loops. These fractional-order control laws may allow fulfilling intricate control performance requirements that are otherwise not in the span of conventional integer-order control systems. However, there are underpinning points that are rarely addressed in the literature: (1) What are the particular advantages (in concrete figures) of FOPID controllers versus conventional, integer-order (IO) PID controllers in light of the complexities arising in the implementation of the former? (2) For real-time implementation of FOPID controllers, approximations are used that are indeed equivalent to high-order linear controllers. What, then, is the benefit of using FOPID controllers? Finally, (3) What advantages are to be had from having a near-ideal fractional-order behavior in control practice? In the present paper, we attempt to address these issues by reviewing a large portion of relevant publications in the fastgrowing FO control literature, outline the milestones and drawbacks, and present future perspectives for industrialization of fractional-order control. Furthermore, we comment on FOPID controller tuning methods from the perspective of seeking globally optimal tuning parameter sets and how this approach can benefit designers of industrial FOPID control. We also review some CACSD (computer-aided control system design) software toolboxes used for the design and implementation of FOPID controllers. Finally, we draw conclusions and formulate suggestions for future research.