In this work, we discuss the application of stochastic optimization approaches to the OLYMPUS case, a benchmark challenge which seeks the evaluation of different techniques applied to well control and field development optimization. For that matter, three exercises have been proposed, namely, (i) well control optimization; (ii) field development optimization; and (iii) joint optimization. All applications were performed considering the so-called OLYMPUS case, a synthetic reservoir model with geological uncertainty provided by TNO (Fonseca 2018). Firstly, in the well control exercise, we successfully applied an ensemble-based approximate gradient method in a robust optimization formulation. Secondly, we solve the field development exercise using a genetic algorithm framework designed with special features for the problem of interest. Finally, in order to evaluate further gains, a sequential optimization approach was employed, in which we run one more well control optimization based on the optimal well locations. Even though we utilize relatively well-known techniques in our studies, we describe the necessary adaptations to the algorithms that enable their successful applications to real-life scenarios. Significant gains in the expected net present value are obtained: in exercise (i) a gain of 7% with respect to reactive control; for exercise (ii) a gain of 660% with respect to a initial well placement based on an engineering approach; and for (iii) an extra gain of 3% due to an additional well control optimization after the well placement optimization. All these gains are obtained with an affordable computational cost via the extensive utilization of high-performance computing (HPC) infrastructure. We also apply a scenario reduction technique to exercise (i), with similar gains obtained in the full ensemble optimization, however, with substantially inferior computational cost. In conclusion, we demonstrate how the state-of-the-art optimization technology available in the model-based reservoir management literature can be successfully applied to field development optimization via the conscious utilization of HPC facilities. Keywords Field development optimization • Well control optimization • Joint optimization • Ensemble-based optimization • Genetic algorithm • OLYMPUS challenge • Uncertainty quantification Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.