Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers) 2023
DOI: 10.18653/v1/2023.acl-long.432
|View full text |Cite
|
Sign up to set email alerts
|

HiTIN: Hierarchy-aware Tree Isomorphism Network for Hierarchical Text Classification

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
2
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
4
1
1

Relationship

0
6

Authors

Journals

citations
Cited by 7 publications
(2 citation statements)
references
References 0 publications
0
2
0
Order By: Relevance
“…The latter can be found in Tables 9 and 10, while the results over the individual splits are reported in Table 11. [149] 0.810 0.533 --HiLAP [99] 0.833 0.601 --HiAGM-TP [97] 0.840 0.634 0.858 0.803 RLHR [167] --0.785 0.792 HCSM [168] 0.858 0.609 0.921 0.807 HiMatch [124] 0.847 0.641 0.862 0.805 HIDDEN [169] 0.793 0.473 --HE-AGCRCNN [170] 0.778 0.513 --HVHMC [171] --0.743 -SASF [126] --0.867 0.811 HTCInfoMax [177] 0.835 0.627 0.856 0.800 PAAM-HiA-T5 [178] 0.872 0.700 0.904 0.816 HPT [136] 0.873 0.695 0.872 0.819 HGCLR [91] 0.865 0.683 0.871 0.812 Seq2Tree [93] 0.869 0.700 0.872 0.825 HBGL [180] 0.872 0.711 0.874 0.820 P-tuning v2 (SPP-tuning) [138] --0.875 0.800 LD-GGNN [186] 0.842 0.641 0.851 0.805 LSE-HiAGM [123] 0.839 0.646 0.860 0.800 Seq2Label [121] 0.874 0.706 0.873 0.819 HTC-CLIP [190] --0.879 0.816 GACaps [191] 0.868 0.698 0.876 0.828 HiDEC [194] 0.855 0.651 --UMP-MG [129] --0.859 0.813 LED [196] 0.883 0.697 0.870 0.813 (HGCLR-based + aug) [198] 0.862 0.679 0.874 0.821 K-HTC [135] --0.873 0.817 HiTIN (BERT) [200] 0.867 0.699 0.872 0.816 HierVerb (few-shot) [137] 0 The standard deviation over the 2 repetitions of 3-fold cross-validation is reported in brackets.…”
Section: Resultsmentioning
confidence: 99%
See 1 more Smart Citation
“…The latter can be found in Tables 9 and 10, while the results over the individual splits are reported in Table 11. [149] 0.810 0.533 --HiLAP [99] 0.833 0.601 --HiAGM-TP [97] 0.840 0.634 0.858 0.803 RLHR [167] --0.785 0.792 HCSM [168] 0.858 0.609 0.921 0.807 HiMatch [124] 0.847 0.641 0.862 0.805 HIDDEN [169] 0.793 0.473 --HE-AGCRCNN [170] 0.778 0.513 --HVHMC [171] --0.743 -SASF [126] --0.867 0.811 HTCInfoMax [177] 0.835 0.627 0.856 0.800 PAAM-HiA-T5 [178] 0.872 0.700 0.904 0.816 HPT [136] 0.873 0.695 0.872 0.819 HGCLR [91] 0.865 0.683 0.871 0.812 Seq2Tree [93] 0.869 0.700 0.872 0.825 HBGL [180] 0.872 0.711 0.874 0.820 P-tuning v2 (SPP-tuning) [138] --0.875 0.800 LD-GGNN [186] 0.842 0.641 0.851 0.805 LSE-HiAGM [123] 0.839 0.646 0.860 0.800 Seq2Label [121] 0.874 0.706 0.873 0.819 HTC-CLIP [190] --0.879 0.816 GACaps [191] 0.868 0.698 0.876 0.828 HiDEC [194] 0.855 0.651 --UMP-MG [129] --0.859 0.813 LED [196] 0.883 0.697 0.870 0.813 (HGCLR-based + aug) [198] 0.862 0.679 0.874 0.821 K-HTC [135] --0.873 0.817 HiTIN (BERT) [200] 0.867 0.699 0.872 0.816 HierVerb (few-shot) [137] 0 The standard deviation over the 2 repetitions of 3-fold cross-validation is reported in brackets.…”
Section: Resultsmentioning
confidence: 99%
“…Zhu et al [200] propose to convert the label hierarchy into a simplified tree structure to remove noisy (or less discriminative) information and then encode this knowledge in the text representations. First, text is encoded using BERT (though any text encoder would work).…”
Section: Hitinmentioning
confidence: 99%