Streaming is a model where an input graph is provided one edge at a time, instead of being able to inspect it at will. In this work, we take a parameterized approach by assuming a vertex cover of the graph is given, building on work of Bishnu et al. [COCOON 2020]. We show the further potency of combining this parameter with the Adjacency List streaming model to obtain results for vertex deletion problems. This includes kernels, parameterized algorithms, and lower bounds for the problems of Π-free Deletion, H-free Deletion, and the more specific forms of Cluster Vertex Deletion and Odd Cycle Transversal. We focus on the complexity in terms of the number of passes over the input stream, and the memory used. This leads to a pass/memory tradeoff, where a different algorithm might be favourable depending on the context and instance. We also discuss implications for parameterized complexity in the non-streaming setting.