The small molecule 6-(tert-butyl)-4-phenyl-4-(trifluoromethyl)-1H,3H-1,3,5-triazin-2-one (3G11) inhibits HIV-1 replication in the human T cell line MT-2. Here we showed that 3G11 specifically and potently blocks HIV-1 infection. By contrast, 3G11 did not block other retroviruses such as HIV-2, simian immunodeficiency virus (SIVmac), bovine immunodeficiency virus (BIV), feline immunodeficiency virus (FIV), equine infectious anemia virus (EIAV), N-tropic murine leukemia virus (N-MLV), B-tropic murine leukemia virus (B-MLV) and Moloney murine leukemia virus (Mo-MLV). Analysis of DNA metabolism by real-time PCR revealed that 3G11 blocks the formation of HIV-1 late reverse transcripts during infection prior to the first-strand transfer step. In agreement, an in vitro assay revealed that 3G11 blocks the enzymatic activity of HIV-1 reverse transcriptase as strong as Nevirapine. Docking of 3G11 to the HIV-1 reverse transcriptase enzyme suggested a direct interaction between residue L100 and 3G11. In agreement, an HIV-1 virus bearing the reverse transcriptase change L100I renders HIV-1 resistant to 3G11, which suggested that the reverse transcriptase enzyme is the viral determinant for HIV-1 sensitivity to 3G11. Although NMR experiments revealed that 3G11 binds to the HIV-1 capsid, functional experiments suggested that capsid is not the viral determinant for sensitivity to 3G11. Overall, we described a novel non-nucleoside reverse transcription inhibitor that blocks HIV-1 infection.