Human immunodeficiency virus type 1 (HIV-1) infection occurs in the central nervous system and causes a variety of neurobehavioral and neuropathological disorders. Both microglia, the residential macrophages in the brain, and astrocytes are susceptible to HIV-1 infection. Unlike microglia that express and utilize CD4 and chemokine coreceptors CCR5 and CCR3 for HIV-1 infection, astrocytes fail to express CD4. Astrocytes express several chemokine coreceptors; however, the involvement of these receptors in astrocyte HIV-1 infection appears to be insignificant. In the present study using an expression cloning strategy, the cDNA for the human mannose receptor (hMR) was found to be essential for CD4-independent HIV-1 infectivity. Ectopic expression of functional hMR rendered U87.MG astrocytic cells susceptible to HIV-1 infection, whereas anti-hMR serum and hMR-specific siRNA blocked HIV-1 infection in human primary astrocytes. In agreement with these findings, hMR bound to HIV-1 virions via the abundant and highly mannosylated sugar moieties of HIV-1 envelope glycoprotein gp120 in a Ca 2؉ -dependent fashion. Moreover, hMR-mediated HIV-1 infection was dependent upon endocytic trafficking as assessed by transmission electron microscopy, as well as inhibition of viral entry by endosomo-and lysosomotropic drugs. Taken together, these results demonstrate the direct involvement of hMR in HIV-1 infection of astrocytes and suggest that HIV-1 interaction with hMR plays an important role in HIV-1 neuropathogenesis.Astrocytes, often identified by glial fibrillary acidic protein expression, constitute a majority of the cells in the brain and are essential for maintaining homeostasis in the brain and, hence, normal brain activities. A number of different and quite diverse functions have been attributed to astrocytes. These include secretion of neurotrophic factors, regulation of the interstitial pH, uptake and metabolism of neurotransmitters, antioxidant defense via scavenging and transforming oxygen free radicals into nontoxic species, modulation of neuronal signals, being an essential structural component of the bloodbrain barrier, and participating in immune responses through production and secretion of cytokines, proteases, protease inhibitors, adhesion molecules, and extracellular matrix components that are key mediators of immunity and inflammation (for recent reviews, see references 6, 13, and 58). Although it is important to note that several of the functions listed above are still controversial, the highly dynamic and reciprocal relationship between astrocytes and neurons suggests that dysfunction of astrocytes could contribute to the pathogenesis of neurological diseases.