Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
This review systematically analyzes the latest advancements in preprocessing techniques for Electrocardiography (ECG) and Magnetocardiography (MCG) signals over the past decade. ECG and MCG play crucial roles in cardiovascular disease (CVD) detection, but both are susceptible to noise interference. This paper categorizes and compares different ECG denoising methods based on noise types, such as baseline wander (BW), electromyographic noise (EMG), power line interference (PLI), and composite noise. It also examines the complexity of MCG signal denoising, highlighting the challenges posed by environmental and instrumental interference. This review is the first to systematically compare the characteristics of ECG and MCG signals, emphasizing their complementary nature. MCG holds significant potential for improving the precision of CVD clinical diagnosis. Additionally, it evaluates the limitations of current denoising methods in clinical applications and outlines future directions, including the potential of explainable neural networks, multi-task neural networks, and the combination of deep learning with traditional methods to enhance denoising performance and diagnostic accuracy. In summary, while traditional filtering techniques remain relevant, hybrid strategies combining machine learning offer substantial potential for advancing signal processing and clinical diagnostics. This review contributes to the field by providing a comprehensive framework for selecting and improving denoising techniques, better facilitating signal quality enhancement and the accuracy of CVD diagnostics.
This review systematically analyzes the latest advancements in preprocessing techniques for Electrocardiography (ECG) and Magnetocardiography (MCG) signals over the past decade. ECG and MCG play crucial roles in cardiovascular disease (CVD) detection, but both are susceptible to noise interference. This paper categorizes and compares different ECG denoising methods based on noise types, such as baseline wander (BW), electromyographic noise (EMG), power line interference (PLI), and composite noise. It also examines the complexity of MCG signal denoising, highlighting the challenges posed by environmental and instrumental interference. This review is the first to systematically compare the characteristics of ECG and MCG signals, emphasizing their complementary nature. MCG holds significant potential for improving the precision of CVD clinical diagnosis. Additionally, it evaluates the limitations of current denoising methods in clinical applications and outlines future directions, including the potential of explainable neural networks, multi-task neural networks, and the combination of deep learning with traditional methods to enhance denoising performance and diagnostic accuracy. In summary, while traditional filtering techniques remain relevant, hybrid strategies combining machine learning offer substantial potential for advancing signal processing and clinical diagnostics. This review contributes to the field by providing a comprehensive framework for selecting and improving denoising techniques, better facilitating signal quality enhancement and the accuracy of CVD diagnostics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.