Following the cloning of the melanocortin receptor and agouti protein genes, a model was developed for the central melanocortin system with respect to the regulation of energy and glucose homeostasis. This model comprised leptin regulation of melanocortin peptides and agouti-related peptide (AgRP) produced from central pro-opiomelanocortin (POMC) and AgRP neurones, respectively, as well as AgRP competitive antagonism of melanocortin peptides activating melanocortin 4 receptor (MC4R) to Gas and the cAMP signalling pathway. In the last decade, there have been paradigm shifts in our understanding of the central melanocortin system as a result of the application of advanced new technologies, including Cre-LoxP transgenic mouse technology, pharmacogenetics and optogenetics. During this period, our understanding of G protein coupled receptor signal transduction has also dramatically changed, such that these receptors are now known to exist in the plasma membrane oscillating between various inactive and active conformational states, and the active states signal through G protein-dependent and G protein-independent pathways. The present review focuses on evidence obtained over the past decade that has changed our understanding of POMC gene expression and regulation in the central nervous system, POMC and AgRP neuronal circuitry, neuroanatomical functions of melanocortin receptors, melanocortin 3 receptor (MC3R) and MC4R, and signal transduction through MC3R and MC4R.