2005
DOI: 10.1103/physrevb.72.165325
|View full text |Cite
|
Sign up to set email alerts
|

Hole-hole interaction in a strainedInxGa1xAstwo-dimensional system

Abstract: The interaction correction to the conductivity of 2D hole gas in strained GaAs/InxGa1−xAs/GaAs quantum well structures was studied. It is shown that the Zeeman splitting, spin relaxation and ballistic contribution should be taking into account for reliable determination of the Fermi-liquid constant F σ 0 . The proper consideration of these effects allows us to describe both th temperature and magnetic field dependences of the conductivity and find the value of F σ 0 .

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

4
26
1
1

Year Published

2010
2010
2021
2021

Publication Types

Select...
9

Relationship

0
9

Authors

Journals

citations
Cited by 26 publications
(32 citation statements)
references
References 23 publications
4
26
1
1
Order By: Relevance
“…The occupation of a second subband or anisotropic scattering could modify the proportionality constant between ω and β 3 . The temporal precession observed should hold universally for cubic SOI, e.g., also in hole gases in group IV [32] and III-V semiconductors [4,[33][34][35][36], or charge layers in oxides like perovskites [37]. Moreover, the effect demonstrated must be considered when designing spintronic devices based on such systems.…”
mentioning
confidence: 99%
“…The occupation of a second subband or anisotropic scattering could modify the proportionality constant between ω and β 3 . The temporal precession observed should hold universally for cubic SOI, e.g., also in hole gases in group IV [32] and III-V semiconductors [4,[33][34][35][36], or charge layers in oxides like perovskites [37]. Moreover, the effect demonstrated must be considered when designing spintronic devices based on such systems.…”
mentioning
confidence: 99%
“…For example, in case of the spin Hall effect, the k-cubic Rashba term is predicted to give rise to a larger spin Hall conductivity [17][18][19]. Recently, the cubic-Rashba SOI has been reported in a two-dimensional hole gas (2DHG) in inversion asymmetric semiconductors InGaAs and GaAs [20,21], and a twodimensional electron gas formed at a surface of the inversion symmetric oxide SrTiO 3 [15]. However in the former case, the InGaAs and GaAs possess both BIA and SIA; thus, they are always influenced by both Dresselhaus and Rashba SOI contributions [22].…”
mentioning
confidence: 99%
“…Observed WL and WAL data have been analyzed by using the Iordanskii-Lyanda-Geller-Pikus (ILP) theory for magnetoconductivity, which took into account both the linear-and cubic-Rashba SOI [15,20,27]. The general formula of the ILP theory is provided in the Supplemental Material [28].…”
mentioning
confidence: 99%
“…Поэтому в ряде случаев используемый подход оказывается предпочтительнее, чем определение m * по температурной эволюции одного пика, для которого тре-буется исследовать осцилляции ШдГ при значительно большем количестве температур. Полученные значения m * ≈ 0.14−0.15m e (m e -масса свободного электрона) хорошо согласуются с литературными данными для аналогичных структур без магнитной примеси [18,19]. Таким образом, флуктуационный потенциал магнит-ной примеси не приводит к существенному измене-нию m * .…”
unclassified