Accurate direction of arrival (DOA) estimation of wideband, low-power nonstationary signals is important in many radio frequency (RF) applications. This article analyses the performance of two incoherent aggregation techniques for the DOA estimation of high chirp-rate linear frequency modulated (LFM) signals used in modern radar and electronic warfare (EW) applications. The aim is to determine suitable aggregation techniques for blind DOA estimation for real-time implementation with a frequency channelised signal. The first technique calculates a single pseudospectrum by directly combining the spatial covariance matrices from each of the frequency bins. The second technique first calculates the spatial pseudospectra from the spatial covariance matrix (SCM) from each frequency bin and then combines the spatial pseudospectra into one single estimate. Firstly, for single and multiple signal emitters, we compare the DOA estimation performance of incoherent SCM-based aggregation with that of the incoherent spatial pseudospectra-based aggregation using the root mean-squared error (RMSE). Secondly, we determine the types of signals and conditions for which these incoherent aggregation techniques are more suited. We demonstrate that the low-complexity SCM-based aggregation technique can achieve relatively good estimation performance compared to the pseudospectra-based aggregation technique for multiple narrowband signal detection. However, pseudospectra aggregation is better suited for single wideband emitter detection. Both the incoherent aggregation techniques presented in this article offer a computational advantage over the coherent processing techniques and hence are better suited for real-time implementation.