Hollow silica nanospheres with radical pore on the surfaces were prepared using the assemblies of valine amphiphilic small molecule and benzene as double-templates through sol-gel method in tetramethylammonium hydroxide (25wt%) solution at the stirring rate of 1 000 rpm. There are a lot of vertical pores on the surfaces of the hollow spheres after removing the templates in Muffle furnace at 550 ℃ for 5 h. The sample was characterized using field-emission scanning electron microscopy, transmission electron microscopy, Brunauer-Emmett-Teller (BET), X-ray diffraction, etc. The diameter, the vertical pore size of the nanospheres and the BET surface areas are 30-100 nm, 4.2 nm, and 570.5 m²/g, respectively. Because the high porosity and specific surface area, this kind of hollow sphere is the excellent antimicrobial carrier. The antibacterial activities of the silica nanospheres were evaluated by using a bacterial growth inhibitory assay. The experimental results show that the silica hollow spheres loaded with Ag + have a good bactericidal effect.